1887

Abstract

The Bunyavirales order are the largest group of negative stranded RNA viruses, infecting humans as well as a bewildering array of animals and plants, in which select members cause severe or fatal disease. To enter host cells, bunyaviruses undergo endosomal transport to specific cellular destinations and exploit the changing environment of maturing endocytic vesicles to mediate genome release. Several virus-endosome fusion triggers have previously been identified, including endosomal potassium (K+) recently identified by our group. Specifically, we demonstrated a role for K+ channels and endosomal K+ concentration ([K+]) in the ‘priming’ of virions for fusion and uncoating events. Interestingly for Bunyamwera virus (BUNV), both a reduced pH and elevated [K+] were required to permit endosomal escape of the virus. To understand the molecular basis for this requirement we have used cryo-electron tomography to study the changes in virion structure upon K+ and pH treatment. These studies reveal why endosomal [K+] and K+ channels are required for bunyavirus entry, highlighting the potential of K+channels as druggable anti-viral targets.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0519
2019-04-08
2024-04-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0519
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error