1887

Abstract

D-amino acids are responsible for cell wall re-modelling in Staphylococcus and are capable of inhibition and mature biofilm disassembly. Staphylococcus aureus and Staphylococcus epidermidis are recognised as recurrent nosocomial pathogens and a common cause of biofilm-associated infections. The combination of amino acids used in the study consisted of d- and l- isomers of tyrosine, methionine, tryptophan and phenylalanine. A semiquantitative microplate crystal violet assay was used to assess the effect of amino acids on biofilm development. Biofilm viability staining using fluorescent microscopy was performed to assess the effect of the amino acid mixtures on biofilm development on submerged surfaces. None of the amino acids when tested individually or as a mixture could reduce biofilm formation. However, at the highest concentration tested 25 mmol 1 equimolar D-amino acid mixture of tryptophan, phenylalanine, tyrosine and methionine caused a considerable biofilm inhibition in three Staphylococcus strains. Microscopy analysis showed that initial surface attachment remained unaffected at 25 mmol 1 mixture of d-amino acids but bacteria did not proceed to form mature biofilms. This suggests inhibition of protein synthesis or a lack of polysaccharide extracellular adhesin formation as no aggregates were observed. The reported bioactivity of D-amino acid on biofilm development and disassembly has been conflictual. It has been established that D-amino acids are incorporated in the bacterial cell wall suggesting they play a role in the complexity of biofilm lifecycle. However, our study indicates that they play no direct role in the inhibition of biofilm formation in Staphylococcus.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0565
2019-04-08
2024-05-18
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0565
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error