1887

Abstract

Natural selection is commonly assumed to act on extensive standing genetic variation. Yet, accumulating evidence highlights the role of mutational processes creating this genetic variation: to become evolutionarily successful, adaptive mutants must not only reach fixation, but also emerge in the first place, i.e. have a high enough mutation rate. Here, we use numerical simulations to investigate how mutational biases impact our ability to observe rare mutational pathways in the laboratory and to predict outcomes in experimental evolution. We show that unevenness in the rates at which mutational pathways produce adaptive mutants means that most experimental studies lack power to directly observe the full range of adaptive mutations. Modelling mutation rates as a distribution, we show that a substantially larger target size ensures that a pathway mutates more commonly. Therefore, we predict that commonly mutated pathways are conserved between closely related species, but not rarely mutated pathways. This approach formalizes our proposal that most mutations have a lower mutation rate than the average mutation rate measured experimentally. We suggest that the extent of genetic variation is overestimated when based on the average mutation rate.

Funding
This study was supported by the:
  • Åke Wiberg Stiftelse (Award M18-0142)
    • Principle Award Recipient: PeterA Lind
  • Vetenskapsrådet (Award 2019-04859)
    • Principle Award Recipient: PeterA Lind
  • Carl Tryggers Stiftelse för Vetenskaplig Forskning (Award CTS 19:204)
    • Principle Award Recipient: PeterA Lind
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001323
2023-05-03
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/5/mic001323.html?itemId=/content/journal/micro/10.1099/mic.0.001323&mimeType=html&fmt=ahah

References

  1. Cano AV, Gitschlag BL, Rozhonova H, Stoltzfus A, McCandlish DM et al. Mutation bias and the predictability of evolution. Phil. Trans. R. Soc. B 2023 378:20220055 [View Article]
    [Google Scholar]
  2. Cano AV, Rozhoňová H, Stoltzfus A, McCandlish DM, Payne JL. Mutation bias shapes the spectrum of adaptive substitutions. Proc Natl Acad Sci 2022; 119:e2119720119 [View Article] [PubMed]
    [Google Scholar]
  3. Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M et al. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101–105 [View Article] [PubMed]
    [Google Scholar]
  4. Stoltzfus A. Mutation, Randomness, and Evolution Oxford University Press; 2021 [View Article]
    [Google Scholar]
  5. Stoltzfus A, McCandlish DM. Mutational biases influence parallel adaptation. Mol Biol Evol 2017; 34:2163–2172 [View Article] [PubMed]
    [Google Scholar]
  6. Yampolsky LY, Stoltzfus A. Bias in the introduction of variation as an orienting factor in evolution. Evol Dev 2001; 3:73–83 [View Article] [PubMed]
    [Google Scholar]
  7. Cano AV, Couce A, Masel J, Payne JL, Stoltzfus A et al. Misrepresenting biases in arrival: a comment on Svensson (2022). Ecol Evol Biol 2022a: [View Article]
    [Google Scholar]
  8. Gomez K, Bertram J, Masel J. Mutation bias can shape adaptation in large asexual populations experiencing clonal interference. Proc Biol Sci 2020; 287:20201503 [View Article] [PubMed]
    [Google Scholar]
  9. Svensson EI. Multivariate selection and the making and breaking of mutational pleiotropy. Evol Ecol 2022; 36:807–828 [View Article]
    [Google Scholar]
  10. Svensson EI, Berger D. The role of mutation bias in adaptive evolution. Trends in Ecol Evol 2019; 34:422–434 [View Article]
    [Google Scholar]
  11. McCandlish DM, Stoltzfus A. Modeling evolution using the probability of fixation: history and implications. Q Rev Biol 2014; 89:225–252 [View Article] [PubMed]
    [Google Scholar]
  12. Lind PA, Farr AD, Rainey PB. Experimental evolution reveals hidden diversity in evolutionary pathways. Elife 2015; 4:e07074 [View Article] [PubMed]
    [Google Scholar]
  13. Murray AW. Can gene-inactivating mutations lead to evolutionary novelty?. Curr Biol 2020; 30:R465–R471 [View Article] [PubMed]
    [Google Scholar]
  14. Koskiniemi S, Sun S, Berg OG, Andersson DI. Selection-driven gene loss in bacteria. PLoS Genet 2012; 8:e1002787 [View Article] [PubMed]
    [Google Scholar]
  15. Anderson P, Roth J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci 1981; 78:3113–3117 [View Article] [PubMed]
    [Google Scholar]
  16. Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. The nature of mutations induced by replication–transcription collisions. Nature 2016; 535:178–181 [View Article] [PubMed]
    [Google Scholar]
  17. Ferguson GC, Bertels F, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics 2013; 195:1319–1335 [View Article] [PubMed]
    [Google Scholar]
  18. Horton JS, Flanagan LM, Jackson RW, Priest NK, Taylor TB. A mutational hotspot that determines highly repeatable evolution can be built and broken by silent genetic changes. Nat Commun 2021; 12:6092 [View Article] [PubMed]
    [Google Scholar]
  19. Knöppel A, Knopp M, Albrecht LM, Lundin E, Lustig U et al. Genetic adaptation to growth under laboratory conditions in Escherichia coli and Salmonella enterica. Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  20. Lind PA, Farr AD, Rainey PB. Evolutionary convergence in experimental Pseudomonas populations. ISME J 2016; 11:589–600 [View Article] [PubMed]
    [Google Scholar]
  21. Lind PA, Libby E, Herzog J, Rainey PB. Predicting mutational routes to new adaptive phenotypes. Elife 2019; 8:e38822 [View Article] [PubMed]
    [Google Scholar]
  22. van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep 2013; 4:697–708 [View Article] [PubMed]
    [Google Scholar]
  23. Halligan DL, Keightley PD. Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst 2009; 40:151–172 [View Article]
    [Google Scholar]
  24. Foster PL. Methods for determining spontaneous mutation rates. Methods Enzymol 2006; 409:195–213 [View Article] [PubMed]
    [Google Scholar]
  25. Luria SE, Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943; 28:491–511 [View Article] [PubMed]
    [Google Scholar]
  26. Dettman JR, Sztepanacz JL, Kassen R. The properties of spontaneous mutations in the opportunistic pathogen Pseudomonas aeruginosa. BMC Genomics 2016; 17:27 [View Article] [PubMed]
    [Google Scholar]
  27. Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci 2015; 112:E5990–9 [View Article] [PubMed]
    [Google Scholar]
  28. Lind PA, Andersson DI. Whole-genome mutational biases in bacteria. Proc Natl Acad Sci 2008; 105:17878–17883 [View Article] [PubMed]
    [Google Scholar]
  29. Long H, Kucukyildirim S, Sung W, Williams E, Lee H et al. Background mutational features of the radiation-resistant bacterium Deinococcus radiodurans. Mol Biol Evol 2015; 32:2383–2392 [View Article] [PubMed]
    [Google Scholar]
  30. Long H, Sung W, Kucukyildirim S, Williams E, Miller SF et al. Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol 2018; 2:237–240 [View Article] [PubMed]
    [Google Scholar]
  31. Pan J, Li W, Ni J, Wu K, Konigsberg I et al. Rates of mutations and transcript errors in the foodborne pathogen Salmonella enterica subsp. enterica. Mol Biol Evol 2022; 39:msac081 [View Article] [PubMed]
    [Google Scholar]
  32. Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2018; 53:29–48 [View Article] [PubMed]
    [Google Scholar]
  33. Sung W, Ackerman MS, Gout J-F, Miller SF, Williams E et al. Asymmetric context-dependent mutation patterns revealed through mutation-accumulation experiments. Mol Biol Evol 2015; 32:1672–1683 [View Article] [PubMed]
    [Google Scholar]
  34. Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C et al. Evolution of the insertion-deletion mutation rate across the tree of life. G3 2016; 6:2583–2591 [View Article] [PubMed]
    [Google Scholar]
  35. Alexander HK, Mayer SI, Bonhoeffer S. Population heterogeneity in mutation rate increases the frequency of higher-order mutants and reduces long-term mutational load. Mol Biol Evol 2017; 34:419–436 [View Article] [PubMed]
    [Google Scholar]
  36. Pentz JT, Lind PA. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens. PLoS Genet 2021; 17:e1009722 [View Article] [PubMed]
    [Google Scholar]
  37. Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. Experimental evolution of bet hedging. Nature 2009; 462:90–93 [View Article] [PubMed]
    [Google Scholar]
  38. Gallie J, Bertels F, Remigi P, Ferguson GC, Nestmann S et al. Repeated phenotypic evolution by different genetic routes in Pseudomonas fluorescens SBW25. Mol Biol Evol 2019; 36:1071–1085 [View Article] [PubMed]
    [Google Scholar]
  39. Hammerschmidt K, Rose CJ, Kerr B, Rainey PB. Life cycles, fitness decoupling and the evolution of multicellularity. Nature 2014; 515:75–79 [View Article] [PubMed]
    [Google Scholar]
  40. Kassen R, Buckling A, Bell G, Rainey PB. Diversity peaks at intermediate productivity in a laboratory microcosm. Nature 2000; 406:508–512 [View Article] [PubMed]
    [Google Scholar]
  41. McDonald MJ, Gehrig SM, Meintjes PL, Zhang X-X, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics 2009; 183:1041–1053 [View Article] [PubMed]
    [Google Scholar]
  42. Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature 1998; 394:69–72 [View Article] [PubMed]
    [Google Scholar]
  43. McDonald MJ, Cooper TF, Beaumont HJE, Rainey PB. The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biol Lett 2011; 7:98–100 [View Article] [PubMed]
    [Google Scholar]
  44. Dawkins B. Siobhan’s problem: the coupon collector revisited. Am Stat 1991; 45:76 [View Article]
    [Google Scholar]
  45. Furman E, Hackmann D, Kuznetsov A. On log-normal convolutions: an analytical–numerical method with applications to economic capital determination. Insur Math Econ 2020; 90:120–134 [View Article]
    [Google Scholar]
  46. MacLean RC, Perron GG, Gardner A. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics 2010; 186:1345–1354 [View Article] [PubMed]
    [Google Scholar]
  47. Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB et al. Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet 2017; 13:e1006570 [View Article] [PubMed]
    [Google Scholar]
  48. Ferrante M, Saltalamacchia M. The coupon collector’s problem. Materials Matemàtics 20141887–1097
    [Google Scholar]
  49. Flajolet P, Gardy D, Thimonier L. Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discrete Applied Mathematics 1992; 39:207–229 [View Article]
    [Google Scholar]
  50. Nath HB. On the collector’s sequential sample size. Trab Estad Invest Oper 1974; 25:85–88 [View Article]
    [Google Scholar]
  51. Boneh A, Hofri M. The coupon-collector problem revisited. Department of computer science technical reports, Purdue University; 1989 https://docs.lib.purdue.edu/cstech/807
  52. Spiers AJ, Bohannon J, Gehrig SM, Rainey PB. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 2003; 50:15–27 [View Article] [PubMed]
    [Google Scholar]
  53. Goymer P, Kahn SG, Malone JG, Gehrig SM, Spiers AJ et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Genetics 2006; 173:515–526 [View Article] [PubMed]
    [Google Scholar]
  54. Bantinaki E, Kassen R, Knight CG, Robinson Z, Spiers AJ et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 2007; 176:441–453 [View Article] [PubMed]
    [Google Scholar]
  55. Adkar BV, Tripathi A, Sahoo A, Bajaj K, Goswami D et al. Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure 2012; 20:371–381 [View Article] [PubMed]
    [Google Scholar]
  56. Dandage R, Pandey R, Jayaraj G, Rai M, Berger D et al. Differential strengths of molecular determinants guide environment specific mutational fates. PLoS Genet 2018; 14:e1007419 [View Article] [PubMed]
    [Google Scholar]
  57. Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a gene’s fitness landscape. Mol Biol Evol 2014; 31:1581–1592 [View Article] [PubMed]
    [Google Scholar]
  58. Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci 2013; 110:13067–13072 [View Article] [PubMed]
    [Google Scholar]
  59. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF et al. The molecular diversity of adaptive convergence. Science 2012; 335:457–461 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001323
Loading
/content/journal/micro/10.1099/mic.0.001323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error